North Atlantic Deep Water Production during the Last Glacial Maximum

نویسندگان

  • Jacob N. W. Howe
  • Alexander M. Piotrowski
  • Taryn L. Noble
  • Stefan Mulitza
  • Cristiano M. Chiessi
  • Germain Bayon
چکیده

Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ(13)C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic

[1] Benthic foraminiferal dC and Cd/Ca studies suggest that deep Atlantic circulation during the Last Glacial Maximum was very different from today, with high-nutrient (low dC, high Cd) deep Southern Ocean Water (SOW) penetrating far into the North Atlantic. However, if some glacial dC values are biased by productivity artifacts and/or air-sea exchange processes, then the existing dC data may b...

متن کامل

Ventilation of the North Atlantic Ocean during the Last Glacial Maximum: A comparison between simulated and observed radiocarbon ages

[1] The distribution of radiocarbon during simulations of the Last Glacial Maximum with a coupled oceanatmosphere-sea ice model is compared with sediment core measurements from the equatorial Atlantic Ceara Rise, Blake Ridge, Caribbean Sea, and South China Sea. During these simulations we introduce a perturbation of North Atlantic freshwater fluxes leading to varying strengths of the Atlantic m...

متن کامل

Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints

[1] The ocean thermohaline circulation is important for transports of heat and the carbon cycle.We present results from PMIP2 coupled atmosphere-ocean simulations with four climate models that are also being used for future assessments. These models give very different glacial thermohaline circulations even with comparable circulations for present. An integrated approach using results from thes...

متن کامل

The oxygen isotopic composition of seawater during the Last Glacial Maximum

High-resolution oxygen and hydrogen isotope measurements were made on pore fluids from deep-sea sediments from sites in the North and South Atlantic. The data provide direct measurements of changes in the isotopic composition of bottom waters during the Last Glacial Maximum (LGM). Results from Ocean Drilling Program (ODP) Site 981 in the North Atlantic, currently bathed in North Atlantic Deep W...

متن کامل

Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca

[1] Paleonutrient proxies currently provide the strongest constraints on the past spatial distribution of deep water masses. We review the state of knowledge derived from the trace metal proxy Cd/Ca for the Atlantic Ocean during the Last Glacial Maximum (LGM). We compile published benthic foraminiferal Cd/Ca data, supplemented with new data, to reconstruct meridional Cd sections through the Hol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016